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Abstract--Two-dimensional  boudinage in a flattening type of bulk deformation, with equal layer-parallel 
extensions in all directions, leads to the development of roundish or polygonal outlines of boudins in plan-view. 
As combined experimental and theoretical studies show, chocolate tablet boudinage with two sets of mutually 
perpendicular boudin axes may form in different ways. (1) Unequal  layer-parallel extension in the matrix results 
in one set of extension fractures forming perpendicular to the greatest principal stress in the matrix. Once these 
long narrow boudins are formed, the greatest principal stress in the brittle layer becomes approximately parallel 
to the long axis of the boudin. As a result a second set of fractures forms normal to the first set. (2) In lineated 
rocks the anisotropy of tensile strength leads to the sequential formation of two sets of extension fractures, 
parallel and perpendicular to the lineation. Depending on the orientation of the lineation the boudin axes may or 
may not be parallel to the principal stresses in the matrix. (3) Boudins with rectangular plan-view may also form 
when two successive events of unidirectional boudinage are superposed on one another. Irrespective of the 
direction of principal extensional strain rate in the matrix, the second generation extension fractures are likely to 
form approximately perpendicular to the first generation boudin axes. 

INTRODUCTION 

SINCE the term chocolate tablet boudinage was used by 
Wegmann (1932) to describe two-dimensional boudin- 
age in competent layers, similar structures have been 
described by a number of authors from several areas 
(e.g. Ramberg 1955, Coe 1959, Fyson 1962, Ramsay 
1967, Schwerdtner & Clark 1967, Casey et al. 1983, 
Ghosh & Sengupta 1987). Both Coe and Fyson recorded 
two sets of boudin neck lines at right angles to each 
other. There is a general agreement that chocolate tablet 
structures develop in a flattening type of bulk deforma- 
tion. 

In the course of structural studies in Indian Precam- 
brian terrains, the present author has encountered 
chocolate tablet boudinage in several areas. The plan- 
view of the structures is particularly well-exposed in the 
thin cherty layers of the iron formation of the Ramagiri 
schist belt, Andhra Pradesh, in the Chotanagpur Gneis- 
sic Complex near Jasidih, Bihar, in the mylonites of the 
Singhbhum Shear Zone, Bihar (Ghosh & Sengupta 
1987) and in the Aravalli metasediments of the Udaipur 
district, Rajasthan (Naha & Halyburton 1977). 
Although the plan-view in some cases shows a lack of 
linear orientation of the extension fractures separating 
the boudins, the majority of the chocolate tablet struc- 
tures show two sets of boudin axes or neck lines at a high 
angle to each other; in the different exposures this angle 
ranges between 70 and 90 ° and is close to 90 ° in many 
cases. Except in the Ramagiri area, where a late linea- 
tion is superimposed on the boudins, their axes are 
parallel and perpendicular to a prominent mineral linea- 
tion. In certain places, especially in the Jasidih area 
where boudinage and pinch-and-swell structures are 
closely associated, chocolate tablet structures developed 

by pinching-and-swelling in one direction and by boudin- 
age in the other, with boudin axes parallel to the linea- 
tion and neck lines of pinch-and-swells roughly trans- 
verse to it. If both these structures developed during a 
progressive deformation, this would imply that the duc- 
tility of the rocks was greater in a direction parallel to the 
lineation than perpendicular to it. 

It is noteworthy that, according to Naha & Halyburton 
(1977), some of the chocolate tablet structures in the 
Aravalli metapelites were formed by superposed defor- 
mations with the development of a second generation of 
extension fractures sub-normal to the first generation 
boudin axes. 

Several authors have dealt with the problem of initia- 
tion of chocolate tablet boudinage (e.g. Wegmann 1932, 
Ramberg 1955, Ramsay 1967, Schwerdtner & Clark 
1967, Sanderson 1974, Casey et al. 1983). The present 
investigation is essentially concerned with the following 
problems which emerged from the field observations. 

(1) Why should two prominent directions of boudin 
axes prevail in a large number of chocolate tablet 
structures? Ramberg (1955) has considered the case of 
boudinage under an axially symmetric bulk flow of the 
matrix. His theory predicts that, when the far-field 
layer-parallel strain rates in the matrix are equal in all 
directions the resulting extension fractures in the brittle 
layer will not have any preferred orientation. On the 
other hand, as Ramsay (1967, p. 112) and Sanderson 
(1974, p. 658) have pointed out, a flattening type of bulk 
deformation cannot cause the s imul taneous  develop- 
ment of two orthogonal sets of fractures in a competent 
bed; if the layer-parallel matrix strain rates are unequal, 
it seems reasonable to expect that only one set of 
fractures will form perpendicular to the direction of 
maximum rate of extension. 
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(2) If there is a contrast in ductility in different 
directions in a lineated rock, how will this mechanical 
anisotropy affect the development  of boudinage? 

(3) The existing theories of unidirectional boudinage 
and of boudinage in axially symmetric deformation deal 
with plates and fibres symmetrically oriented with 
respect to the principal stresses in the matrix (Ramberg  
1955, Lloyd & Ferguson 1981, Lloyd et al. 1982). These 
theories indicate that the viscous drag or shear strain of 
the matrix at the contact of the embedded elastic plate 
exerts an external force on the plate. The tensile stress 
on the plate depends not only on the magnitude of this 
force at a point but also on the length of the plate in the 
direction in which the force acts. In cases of superposed 
deformation an early generation of boudin axes may not 
be parallel to the principal strain rate of the matrix in the 
second deformation.  To what extent will the tensile 
stress in the competent  unit in the second deformation 
depend on the shape and orientation of the first 
generation boudins? 

The present paper  describes analogue experiments 
and theoretical studies which address these problems. In 
designing the experiments the embedding of a brittle 
plate in a viscous medium was avoided, mainly for two 
reasons. (1) In the embedded layer the initiation of 
fractures and the progressive evolution of boudinage 
cannot be observed. (2) For the viscous drag to be 
effective on the plate, the matrix must stick firmly to the 
plate. Therefore,  a surface of the fractured embedded  
plate cannot be uncovered without disturbing the 
pattern of fractures. Thus the experiments were 
designed in such a way that boudinage in a thin plate 
could take place by the action of the viscous force acting 
from below while the upper  surface of the model 
remained free. 

EXPERIMENTAL PROCEDURE 

General 

The experiments described in this section involve the 
placing of a thin plate of partially dried plaster of Paris 
on the horizontal surface of a slab of pitch and allowing 
the pitch to flow, either by its own weight or by a uniaxial 
extension. In the different experiments the flow of the 
pitch was of three types: (1) axially symmetric,  with 
equal rates of extension in all radial directions in the 
horizontal plane, (2) unequal rates of extension in two 
horizontal directions, with/~ > ~,. > 0 and (3) uniaxial 
extension in one horizontal direction. 

Types of  flow in the matrix 

To achieve an axially symmetric flow, a circular cylin- 
der of pitch was prepared (Fig. 1) with a vertical axis of 
about 80 mm and a diameter  of about 170 mm. It was 
placed on a glass plate, the surface of which was wetted 
with soap solution to avoid sticking of the pitch to the 
glass. The side of the cylinder was wrapped by a 15 mm 
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Fig. 1. (a) Vertical section and (b) plan-view showing the elements of 
a pitch model for axially symmetric flow. 

thick wall of modelling clay with an inner lining of 
polythene. The pitch slab with its side wall was allowed 
to stand on the glass plate for some time till small 
irregularities on the upper horizontal surface were 
smoothened out. After  placing a brittle plate of plaster 
of Paris on its upper surface, the pitch was allowed to 
flow by taking away the side wall of modelling clay and 
polythene, the latter preventing the sticking of pitch to 
the modelling clay. It may be noted that a polythene 
sheet sticks fast to pitch but can be easily removed 
without causing permanent  deformation provided tt ~s 
taken off by sharp tugs and not bv a slow pull. 

After  the flow of the pitch has started, the experiment 
lasts a few minutes only and successive stages of 
deformation are photographed.  During the experiment 
the upper  surface of the cylinder remains essentially 
horizontal and circular in outline although the diameter  
of the circle progressively increases. 

In another  group of experiments a thin brittle plate 
was subjected to unequal extensions in two mutually 
perpendicular directions. The pitch cylinder for this 
purpose was built up in two parts a thick lower slab and 
a thin upper  disk A circular aluminium plate of 1,5 mm 
thickness and 100 mm diameter  was cut into parallel 
strips each of 12.5 mm width, The reassembled plate 
(Fig. 2) was placed at the centre of the upper  surface of 
the lower cyclinder of pitch. The thin disk of pitch and 
the plaster of Paris plate were placed on top of it and the 
assembled pitch cylinder then allowed to deform as 
before. A circular marker  line on the pitch surface 
around the brittle plate was deformed into an ellipse 
with both diameters progressively increasing in length 
but at different rates (Fig. 2). A small variation in the 
ratio of the bulk strain rates ~'~ and ~. in the two 
directions could be made by adjusting the thickness of 
the upper  disk. If the metal strips were embedded too 
deeply, the effect of their displacements was negligible 
on the upper  surface of the pitch. On the other hand. 
if the strips were embedded too close to the surface 
they produced extension in only one direction on the 
upper surface, with i ~ O. A biaxial extenston with 
perceptible difference between the two strain rates was 
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Fig. 2. Method of inducing unequal flow near the surface of a pitch 
slab. (a) The inner circle is a circular metal plate cut into eight parallel 
strips. The metal plate lies embedded about  1-1.5 cm below the top 
surface of the pitch cylinder. The outer  circle represents a marker  
circle on the top surface of pitch. (b) Displacement of the embedded 
metal strips and deformation of marker  circle on the upper  surface 

during the flowing out of the pitch. 

obtained when the thickness of the upper disk ranged 
between 10 and 15 mm. With such thicknesses of the 
upper disk, the ratio ~x/~y within the first few minutes 
ranged between 1.2 and 1.4. 

For the third group of experiments a rectangular slab 
of pitch was placed on the wet surface of a glass plate. 
The long vertical edges were confined between two fixed 
vertical glass plates with wet inner faces. The short 
vertical edges were stuck fast to two wooden blocks 
(Fig. 3). For uniaxial tension, the wooden blocks were 
slowly pulled apart. On its upper surface the length of 
the pitch slab progressively increased, while the width 
remained essentially the same. 

Placing of brittle plate 

The brittle plates were of three types (a) circular, (b) 
rectangular with a large length/width ratio and (c) 
circular with a lineation. For the first two types the upper 
surface of pitch was covered with a thin polythene sheet 
from which a circular or rectangular hole had been cut 
out. A thin slurry of plaster of Paris was sprayed on the 
exposed surface of pitch. The consistency of the slurry 
was such that it was thin enough to be sprayed smoothly 
(Fig. 4a). The plaster of Paris plates were about 1 mm or 
less in thickness. After the plaster of Paris had partially 
dried, the polythene sheet was taken off. The experi- 
ment was started, i.e. the confining walls removed, only 
after the plaster of Paris had dried to a correct con- 
sistency. A long period of drying makes the plate so 
strong that it does not undergo fracture or permanent 
deformation under the action of the viscous drag, 
whereas with a short period of drying it deforms 
homogeneously, without the development of fracture. 
In most cases a period of 5-8 min of drying gave good 
results. 
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Fig. 3. Arrangement  for inducing uniaxial extension in pitch slab 
(stippled). The basal glass plate and the inner walls of vertical glass 
plates are moistened with soap water. The oblique Strip at the centre is 
a thin horizontal plate of plaster of Paris resting on the horizontal 
surface of pitch slab. The vertical glass plates are held in position while 

the two wooden blocks are slowly pulled apart. 

In one type of model, the exposed circular surface 
of pitch was coated by applying the plaster of Paris with 
a brush. The parallel brush marks gave a lineated 
appearance to the plaster of Paris sheet (Fig. 4e). 
Because of the brush marks or fine grooves-and-ridges, 
the sheet of plaster of Paris became mechanically 
anisotropic; its tensile strength parallel to the 'lineation' 
was greater than in a perpendicular direction. This 
structural anisotropy could be produced only because 
the sheet of plaster of Paris was thin. The brush marks 
are in too fine a scale to cause significant strength 
variation in a thick plate. 

EXPERIMENTAL RESULTS 

Experiments under axially symmetrical flow 

With axially symmetrical flow of the pitch slab, an 
overlying circular plate of plaster of Paris (Fig. 4a) 
developed a network of fine cracks within a few seconds. 
As expected, there was no preferred orientation of the 
fractures; the boudins in plan view were equant and 
somewhat roundish or polygonal (Fig. 4b). However, in 
a narrow, peripheral zone of the plate there were only 
radial fractures. The same type of boudins were also 
obtained when the brittle plate was square (Fig. 4c). 
This pattern is consistent with the radial and tangential 
stress distributions obtained theoretically by Ramberg 
(1955, equations 32 and 33). Ramberg's equations show 
that the radial stress Orr vanishes at the periphery, but the 
tangential stress o00 does not vanish. Hence, only radial 
fractures are expected to form near the periphery. 

Under similar axially symmetrical flow of the matrix, 
an entirely different pattern of extension fractures was 
produced when the overlying brittle plate was in the 
form of a long narrow rectangular strip. In this case only 
one set of parallel extension fractures formed, essen- 
tially perpendicular to the long axis of the plate (Fig. 4d). 
The modes of development of the fractures were of two 
types. A single mid-point fracture developed if the plate 
had not undergone any perceptible pre-fracture perma- 
nent deformation. Each of the fragments was then sub- 
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divided into boudins by a sequential development  of 
fractures (Ramberg  1955, Lloyd et al. 1982). On the 
other hand if the pre-fracture plastic deformation was 
large, the fractures developed essentially at the same 
time at more than one point (Fig. 4d). 

In another  series of experiments a lineated circular 
sheet was subjected to an axially symmetrical flow of the 
matrix. The lineated sheet (Fig. 4e) produced a set of 
fractures parallel to the lineation almost simultaneously. 
With continued flow in the matrix the parallel strips or 
boudins were separated from each other, while each of 
the strips were further broken up into rectangular 
fragments by the development  of one or more fractures 
perpendicular to the length of the strip (Fig. 4f). The 
chocolate tablet boudins in these experiments were thus 
produced by sequential development  of two mutually 
perpendicular sets of fractures. The orientation of the 
first set of fractures was controlled by the lineation while 
the orientation of the second set was determined by the 
orientation of the long axis of the first set of boudins. 
The time interval between the development  of the two 
sets of fractures varied in the different experiments,  
presumably due to variation in stength of the plaster of 
Paris plate. 

Boudinage under unequal layer-parallel stretching in 
matrix 
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Fig. 6. Numerical example showing development of chocolate tablet 
boudinage by successive halving of boudins in a flattening type of bulk 
deformation. In stages (b). (c) & (e) the halving took place bv 
development of extension fractures normal to the x-direction. In (d') 
and (f) the new fractures are normal to the 3,-direction. See text for 

details. 

Let i:, and i', be the far-field principal strain rates in 
the matrix. When the brittle plate was circular, a set of 
extension fractures formed in the major  part of the plate 
more or less at right angles to k~ (Fig. 5a). Along a 
narrow peripheral zone the fractures were approxi- 
mately perpendicular to the periphery. With progressive 
deformation a second set of fractures started to develop 
perpendicular to i',. These experiments show that in a 
flattening type of bulk deformation,  with /~, > i', > 0, 
chocolate tablet structures may form by sequential 
development  of two orthogonal sets of fractures. It is 
noteworthy that the second set of fractures develops 
perpendicular to the y-axis although the far-field strain- 
rate of the matrix is smaller along y than along x. The 
second set of fractures develop only after the plate had 
divided into a number  of long narrow strips or lenses 
parallel to the y-axis. Subsequent fractures must develop 
perpendicular to the long axis of these boudins. 

Another  series of experiments was performed using 
long narrow strips of plaster of  Paris, with the long axis 
oriented at 0, 30, 60 and 90 ° to k,. Because of the 
importance of these results, each of the experiments was 
repeated several times. In each of these experiments a 
single set of fractures formed perpendicular to the length 
of the plate (Fig. 5b & c). Thus, the orientation of the 
fractures was entirely controlled by the geometry of the 
plate and was independent of the direction of the far- 
field principal stresses in the matrix. These experiments 
have a bearing on two aspects of the process of 
boudinage. 

(i) They explain why, in the course of a flattening type 
of progressive deformation with i'~ > i',. > 0, a second 

and later set of fractures may develop at right angles to 
the first, i.e. not perpendicular to the maximum bulk 
strain rate in the matrix. 

(ii) The experiments also have a bearing on the 
development  of chocolate tablet structure in superposed 
deformations.  If a flattening type of deformation is 
superimposed on a layer which has a set of long, narrow 
first generation boudins then the second generation 
boudinage structures are likely to have their axes 
approximately perpendicular to those of the first set. 
irrespective of orientations of the principal strain axes m 
the matrix during the second deformation.  

In experiments usmg anisotropic plates with 'linea- 
tions" at angles of 0 .30 .60  and 90 ° to ~x in the matrix, two 
sets of fractures were also produced, one parallel and 
one at a high angle to the lineation. Let the fractures 
parallel and perpendicular to the tineations be called 
longitudinal and transverse fractures. When the linea- 
tion was perpendicular to or at an acute angle to/~.,., the 
longitudinal fractures were the first to develop. When 
the lineation was parallel to ~x (Figs. 5d and 7c). the first 
fractures to appear  were either longitudinal or trans- 
verse, presumably depending upon the ratio of tensile 
strengths of the plate in the two directions and on the 
ratio of the far field strain rates i~.Ikx in the matrix. 

Consider a stretching tineation and a chocolate tablet 
structure (i) developed successively in the course of a 
progressive coaxial deformation or (ii) developed in 
unrelated superposed deformations. If the orientation 
of extension fractures is indeed controlled by the 
lineation, then in the first case the longitudinal and 



T h e o r y  of  c h o c o l a t e  t a b l e t  b o u d i n a g e  

Fig. 4. (a) Top view of pitch model ¢¢ith circular plate of plaster of Paris and side wall of modelling clay. (b) Multi-directional 
boudinage in circular plate of plaster of Paris in axially symmetric flow of underlying pitch. (c) Multi-directional boudinage 
of square plate in axially symmetric flow of underlying pitch. (d) Extension fractures transverse to long, narrow plate of 
plaster of Paris, with axially symmetric flow of underlying pitch. (e) Lineated plate of plaster of Paris on pitch cylinder before 
start of experiment. (f) Development of extension fractures parallel and perpendicular to lineation in circular plate of plaster 

of Paris under axially symmetric flow. The fractures parallel to lineation developed first. 
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Fig. 5. (a) Circular plate of  plaster of Paris subjected to unequal  extensions in two directions. The  discontinuous outer  line 
was initially a circular marker .  The short white line on r ight-hand side indicates the perpendicular  to the  long axes of the 
embedded  metal strips. Note incipient development  of fractures perpendicular  to ~,.. (b) Deve lopment  of  transverse 
fractures in long narrow plate initially oriented at an angle of  30 ° with ?~ > i ,  > 0: note elliptical outline of deformed 
circular markers.  (c) Deve lopment  of  transverse fractures in long, narrow plate resting on pitch cylinder whose upper  part  
is subjected to unequal  rates of  extension in two directions: note that the fracture is produced perpendicular to ~y. (d) Plaster 
of Paris plate with brush marks  parallel to kx showing first set of  fractures formed perpendicular  to lineation and second set 
parallel to lineation. The  white line on the right is along kx. (e) Plaster of Paris plate with brush marks at an angle of  30 ° to 
i~: near  the upper  surface in the pitch slab ~x > /:, > 0. (f) Development  of  transverse fractures in a tong, narrow plate with 
the long axis initially at 30 ° with direction of uniaxial extension (left to right) in matrix. The  embossed circular marks  on pitch 

are continually erased by flow of pitch. The photograph shows freshly embossed circular marks. 
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Fig. 7. Schematic representat ion of different ways of development  of 
chocolate tablet boudinage.  Single line arrows indicate far-field layer- 
parallel strain in matrix. Double line arrows connect an evolutionary 
sequence. In (a) matrix flow is axially symmetric. (b) and (c) show 
sequential development  of two sets of mutually perpendicular  boudins 
in flattening type of strain with unequal principal extensions. The 
lower diagram of (c) shows that,  in the presence of a strong anisotropy, 
the first set of boudins may form parallel to a lineation (dashed lines) 
and normal to ~,.. The upper diagram of (c) shows that,  if the 
anisotropy is not so marked,  houdinage may take place as in (b). (d) 
and (e) show development  of chocolate tablet boudinage in superposed 
deformations.  In (d) the later deformation is of flattening type and in 

(e) it causes a uniaxial extension. 

transverse boudin axes will be parallel to the directions 
of principal layer-parallel strains in the matrix (Figs. 5d 
and 7c). The experimental results indicate that for the 
second case the boudin axes may not be parallel to the 
directions of principal layer-parallel strains in the matrix 
(Figs. 5e and 7d). 

Boudinage in long, narrow rectangular plate obliquely 
aligned in a matrix undergoing uniaxial extension 

The long axis of the rectangular plate was aligned at an 
angle of either 30 or 60 ° with the direction of extension 
of the pitch slab. In either case, the extension fractures 
were normal to the length of the plate (Fig. 5f). In the 
study of boudinage structures these experiments are 
relevant in two ways. 

(i) Consider the case of superposed boudinage in two 
unrelated deformations of which the second deforma- 
tion produces a layer-parallel uniaxial extension of the 
matrix material. In the general situation this extension 
will be at some angle to the first generation boudin axes. 
The experiments suggest that, even in such a situation, 

the second generation boudin axes will be approximately 
perpendicular to the first generation axes (Fig. 7e). 

(ii) If the brittle layer is mechanically anisotropic, with 
a lineation neither parallel nor perpendicular to the 
direction of bulk uniaxial extension, the layer may first 
break up into a set of long narrow boudins parallel to the 
lineation. The experiments suggest that, with progres- 
sive deformation, a chocolate tablet structure may form 
by development of a second set of fractures at a high 
angle to the early boudins. 

THEORETICAL CONSIDERATIONS 

Although the experimental models give us an insight 
into the problem of development of chocolate tablet 
boudinage, they differ from the natural situation in at 
least one respect. The flow in the viscous material in the 
experiments is due to the effect of gravity. In the natural 
situation the ductile flow in the incompetent host is 
associated with a layer-normal compression. A theoreti- 
cal analysis has therefore been carried out using a model 
of an elastic-brittle layer embedded in a viscous matrix 
(Fig. 8). The sandwiched model is confined between two 
rigid plates which approach towards each other and give 
rise to a layer-normal compression. In this theoretical 
analysis, the details of which are given in the Appendix, 
three cases have been considered. 

(1) The matrix undergoes plane strain in a plane 
perpendicular to the embedded plate, with unidirec- 
tional extension parallel to the plate. The embedded 
plate is long and narrow and has its long axis at an angle 
a to the principal extension rate in the matrix (Fig. 9). 
The stresses in the elastic plate are given by equation 
(A10). This equation shows that the largest tensile 
stresses are obtained in the middle of the plate, on a line 
parallel to the breadth and passing through the centre. 
At any point on this line the orientation of the principal 
tensile stress (measured by its angle 0 with the long axis 
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Fig. 8. Development  of shear strain in viscous matrix at contact with 
embedded elastic plate. Lines initially perpendicular to plate in (a) 
become curved in (b). The shear stress r at the contact of the plate 

increases from centre outward and is zero at the centre. 
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Fig. 9. Plan view of rectangular elastic strip of length 2a and breadth 
2b. with schematic representation of external forces imparted by an 
embedding viscous matrix, x- and y-axes are parallel, respectively, to 
the mid-level strain rates ~-!,' and i'?. x '-  and y'-axes are parallel to the 
length and breadth of the plate, the angle between x and x' being a. 

of the plate) is given by equation (A12). This equation 
and Table A1 show that the principal tensile stress in the 
middle of the plate is sub-parallel to the long axis of the 
plate. The extension fracture should therefore form 
sub-normal to this direction• 

(2) The matrix undergoes unequal rates of extension 
in two directions parallel to the plate, the extension rates 
at the mid-level of a matrix slab being e~'" > ~y..o The 
embedded  rectangular plate has its edges parallel to 
these principal directions of matrix strain rates and the 
principal stresses in the plate are given by equation 
(A29). 

(3) In the third case the bulk deformation is the same 
as in (2) but the rectangular plate is long and narrow, 
with the long axis at an angle a to k~'. The components  of 
stresses in the plate parallel to its length and breadth,  are 
given by equation (A34). The maximum tensile stresses 
are obtained in the middle of the plate. The direction of 
principal stress in the middle of the plate is given by 
equation (A35). This equation and Table A2 show that 
if b / a ,  the ratio of width and length of the plate, is small, 
i.e. if the plate is long and narrow, the principal tensile 
stress in the middle is sub-parallel to the long-axis of the 
plate. This theoretical analysis therefore predicts that 
the mid-point extension fracture in the plate will be 
sub-normal to the length of the plate. 

DISCUSSION 

The following discussion is based on the experimental  
models and a theoretical analysis of an elastic-brittle 
layer embedded in a viscous matrix• The stresses and 
strains in the layer will be different from those in the 
matrix at a large distance from the layer. It should be 
understood that the x- and y-axes are directed parallel to 
the layer and that ~'~' and ~'  are the far-field (mid-level) 

• o principal strain rates in the matrix, with ~!,' 1> e~.. The 
major  conclusions are summarized diagrammatically in 
Fig. 7. 

Two-dimensional boudinage structures form in a suit- 
ably oriented brittle layer under a flattening type of bulk 

• , o  • o deformation,  with ~, /> e,. > 0. If the strain rates are 
equal in all directions parallel to the plane of the layer, a 
network of extension fractures develops more or less 

simultaneously and divides the layer into boudins which 
are roundish or polygonal in plan-view (Fig. 7a). 
However .  a large number  of two-dimensional boudinage 
structures show two sets of extension fractures at a high 
angle to each other. Theoretical and experimental 
studies indicate that the two sets of fractures could not 
have formed strictly simultaneously. Such chocolate 
tablet structures may develop in different ways 

• o ~" > 0. a single set of extension fractures ( l )  I fe~  > y 
will form perpendicular to the x-axis. The width of 
the boudins will be reduced by successive mid-point 
fracturing. However ,  as the experiments and the 
theoretical studies show L the stress in the embedded 
layer depends not only on the magnitude of the external 
force imparted to the layer by the viscous drag of the 
matrix, but is also controlled by the thickness and layer- 
length along which the external force acts. Hence.  if the 
boudins formed in the first stage are sufficiently long as 
compared  to their width, the stress along the y-direction 
or along the long axis of the boudins may become larger 
than that along the x-direction, even though the far-field 
strain rate remains larger along the x-axis than along the 
v-axis (Fig. 7b). Equation (A29) suggests that the course 
of evolution of chocolate tablet boudinage can be qutte 
complex. After  a certain stage of successive mid-point 
fracturing normal to the x-axis, fractures normal to the 
y-axis and fractures normal to the x-axis may form in 
alternate steps until the boudins attain a stable dimen- 
sion. To clarify this point with a simple numerical 
example consider an embedded  layer 8 units × 8 units 
square with edges parallel to the x- and the y-axes 
(Fig. 6a). For the sake of simplicity let us consider only 
the stresses at the centre of a plate, at x = y = 0• 
According to equation (A29) these stresses are 

A a  2 A k b  2 

o, - 2(1 -- k)  o, - 2(1 - k~' (1) 

where a and b are the plate lengths parallel to x- and 
y-axes, respectively, k = k~o/ko and A, as given by equa- 
tion (A1), is a function of matrix viscosity, layer-normal 
bulk shortening rate and the thicknesses of the brittle 
plate and embedding viscous slabs• For the numerical 
example let k = ~,,. This means that at some distance 
from the elastic plate the matrix stress along the x-direc- 
tion is 10 times larger than along the y-direction. By 
equation (1) we then have at the plate centre 

64A 64A 
o ,  - 2(1 + k) o, - 2 ( 1  + k)  

so that o~ = 10 or. A mid-point fracture will form normal 
to ox if the stress exceeds the tensile strength and will 
divide the plate into two parts in each of which a - 4 and 
b = 8 (Fig. 6b). From equation (1) we find that at the 
centre of each of these plates o, = 2.5 c~,.. Further 
fracturing normal to x-axis will give us boudins with 
a = 2 and b = 8 (Fig. 6c). Since at the centre of such a 
boudin o). = 1.6 or,,, the next set of fractures will form 
normal to the y-axis, giving rise to boudins with a = 2 
and b = 4 (Fig. 6d). After  this stage successive halving 
of the boudins will take place by fracturing alternately 
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normal to x-axis and normal to y-axis (Fig. 6e & f) until 
the boudins have a stable size. 

Equation (1) further shows that in exceptional cir- 
cumstances cr x = o r in the central part of a boudin, even 

• O " O  if ex # ey. Such a situation may develop if during the 
successive halving, the ratio a / b  of the boudins happens 
to have a critical value, i.e. a / b  = x/-k. Under such 
circumstances the plan-view of a boudinaged layer may 
show an association of rectangular and roundish out- 
lines. 

(2) The development of boudinage will be modified 
when there is a large difference in the tensile strengths of 
the layer in different directions. In the present investiga- 
tion, I have considered the case where the tensile 
strength of a layer transverse to a lineation is significantly 
smaller than the strength parallel to the lineation. A 
similar situation is often encountered in rolled metal 
plates. During hot or cold working of a two-phase alloy 
a mechanical fibering develops in the plate due to 
preferred orientation of deformed second phase grains 
and preferred fragmentation of grains. This linear 
structure is similar to the commonly observed stretching 
lineation in deformed rocks. An important consequence 
of mechanical fibering is that the strength and ductility of 
the plate is often lower in the transverse direction than in 
the longitudinal direction (Dieter 1961, p. 559). 

Let us first consider the case in which a stretching 
lineation and a boudinage structure develop successively 
in the course of a single continuous deformation with 
ex.O > ey'° > 0. The lineation will initiate parallel to the 
x-axis. In such a lineated rock the first set of extension 
fractures will develop perpendicular to either ax or ey 
(Fig. 7c); this will depend on the ratio ~y/~?o as well as on 
the ratio of tensile strengths perpendicular and parallel 
to the lineation. In either case, if a second set of fractures 
develops it will be at right angles to the first set (Fig. 7c). 

(3) If the lineation and the boudinage structure 
develop successively in two unrelated deformations, the 
lineation may not be parallel to the far-field principal 
strain rate of the second deformation. If the tensile 
strength perpendicular to the lineation is much lower 
than that parallel to the lineation, then, for a flattening 

" O  " O  type of bulk deformation, either with e x = e r or with 
• O " O  ex > ey the first set of extension fractures will be parallel 
to the lineation and the second set will subsequently 
form normal to the first. In general, neither set will be 
parallel to the far-field principal strain of the second 
deformation (Fig. 7d). 

No experiments were performed with similar lineated 
layers in bulk uniaxial extension. However, the general 
principles which emerge from this study lead to the 
conclusion that even for such a bulk uniaxial extension, 
with e,. > 0, . . . . .  ey' = 0, chocolate tablet boudinage, with 
boudin axes parallel and perpendicular to the lineation, 
can develop, provided the lineation is at an angle to the 
principal strain rate in the matrix. 

(4) In all three cases described above, the chocolate 
tablet boudinage formed during a single progressive 
deformation. An important conclusion which emerges 
from the experimental and theoretical studies is that, 

even if two events of unidirectional boudinage are 
superposed on one another by unrelated deformations, 
there is a strong likelihood that the two sets of boudin 
axes or neck lines will be more or less at right angles to 
each other (Fig. 7e). This is the only relation to be 
expected when the first generation boudins are very 
much longer than their width and the process of second 
generation boudinage is not modified by the develop- 
ment of a strong second generation anisotropy. In gen- 
eral, the orientation of the second generation boudin 
axis will be oblique to the second generation principal 
strain axes in the incompetent host. 

The models presented here refer to certain simple 
situations. The mode of development of chocolate tablet 
boudinage may be modified by other factors, such as the 
presence of flaws and inhomogeneities, the presence of 
a cleavage transecting the layer or the development of a 
second generation lineation. Under the influence of such 
modifying factors the two sets of boudin axes, either in 
progressive deformation or in superposed deformations, 
may not be at a high angle to each other. Moreover, the 
present analysis is essentially concerned with the 
development of two-dimensional boudinage in elastic- 
brittle layers in which there is no pre- or post-boudinage 
plastic deformation. In cases of progressive non-coaxial 
deformation or during superposed deformations the 
angle between two sets of boudin axes may be modified 
by plastic deformation. 

As mentioned in the introduction, lineated rocks in 
certain areas show both boudinage and pinch-and-swell 
structures, with the boudin axes running parallel to the 
lineation and the neck lines of pinch-and-swell at a high 
angle to the lineation. Such a difference in behaviour 
may result from different strain rates parallel and 
perpendicular to the lineation. Alternatively, the occur- 
rence of such structures might suggest that, as in the case 
of certain rolled and lineated metal sheets, the ductility 
of the rocks was higher in the longitudinal direction than 
in the transverse direction. As a consequence, in a 
flattening type of bulk deformation the rock may develop 
extension fractures in one direction while ductile flow in 
the other direction may give rise to pinch-and-swell 
structures. 

Certain aspects of the present work need further 
elaboration. 

(1) In both the experiments and the theoretical studies 
the competent layer lies parallel to the 2122-plane of bulk 
strain of the matrix. Evidently, further work is necessary 
for the more general situation in which the layer is 
inclined to all the principal axes of bulk strain. 

(2) The experiments show that, in an elastic-brittle 
layer, boudinage takes place sequentially by successive 
mid-point fracturing. However, when there was a large 
amount of permanent deformation before fracturing, 
the extension fractures formed all over the layer more or 
less at the same time. Although the latter observation 
is of considerable importance, the reason for such 
simultaneous boudinage is not immediately apparent. 
There is a possibility that the latter type of boudinage 
take~ places as a consequence of simultaneous pinching- 
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and-swelling, as predicted by Smith (1975, 1977). There 
is no way of testing this hypothesis from the present 
series of experiments in which the plates of plaster of 
Paris are too thin for identifying incipient pre-fracture 
pinch-and-swell structures. 

(3) Chocolate tablet structures in lineated rocks may 
form by development of two sets of extension fractures 
parallel and perpendicular to a lineation. In some areas 
the fractures parallel to a stretching lineation are more 
prominent than those perpendicular to it. The experi- 
ments with lineated sheets suggest that, in such rocks, an 
initial set of boudins may more easily form parallel to the 
lineations than in any other direction, even if the 
maximum rate of extension in the rock is not at right 
angles to the lineation. The importance of this process, 
or the lack of it, can be assessed only after more extensive 
studies with natural examples of chocolate tablet struc- 
tures. The method of study devised by Casey et al. (1983) 
may offer valuable information in this context. 
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APPENDIX 

GENERAL 

In the following theoretical analysis it is assumed that a thin elastic- 
brittle plate of thickness H is sandwiched between two thick viscous 
slabs, each of thickness h (Fig. 8). The sandwiched model is confined 
between two rigid plates, which approach towards the embedded plate 
with velocities _+ #. 

Ramberg has considered the development of boudinage when the 
viscous matrix is undergoing a unidirectional extension along the long 
axis of a rectangular elastic plate, l f there  is no slip between the matrix 
and the plate and its two confining walls, layer-normal marker lines in 
the matrix will bend outward symmetrically (Fig. 8). At the contact 
with the embedded plate, the marker lines on either side of the 
symmetry plane, will no longer remain perpendicular to the surface of 
the embedded plate. The contact shear strain and shear stress in the 
matrix will be zero in the middle of the plate and will increase towards 
either end. From the symmet W of distribution of this shear stress r 
(Fig. 8), it is evident that under its action the elastic plate will be 
subjected to an external force of magnitude 2r/H per unit volume of 
the plate (Ramberg 1955, Lloyd et al. 1982). The magnitude of  this 
force will be 

R = ,4. R~ = 0 (AI)  

with 

12 q W,, 
A = - ~  (Ramberg 1955), 

where q ix the coefficient o[ viscosity in the matrix and ~i,,, is the upward 
velocity of a rigid plate. It is noteworthy that, since R, is an external 
force which acts on unit volume, it has the nature of body force density 
(Symon 1960, p. 246). Alttmugh Ramberg's  analysis is for a rectangular 
plate the long axis of which is parallel to the unidirectional extension in 
the matrix, it will be assumed in the following analysis that equation 
(A 1) holds, at least as a first approximation, to rectangular plates, the 
normal to which is parallel to fi'o, but the long axis of which is at an 
acute angle to the far-field principal strain rate along the x-direction in 
the matrix (Fig. 9). 

BOUDINAGE IN OBLIQUE STRIP UNDER BULK 
UNIAXIAL EXTENSION 

Let us consider the stress distribution in an elastic strip embedded in 
a viscous matrix undergoing a layer-normal compression along the 
z-axis and a unidirectional extension along the x-axis (Fig. 9). The 
origin of co-ordinates is chosen at the centre of the elastic strip which 
has length 2a and width 2b on the xy-plane. The long axis of the plate 
is oriented at an angle a with the x-axis. If the plate is very hmg 
compared to its width it will rotate in the xy-plane as a similarly 
oriented passive marker line in the matrix (Ghosh & Ramberg 1976). 

Let x '  and y'  co-ordinate axes be chosen along the length and the 
width of the plate, and with the origin at the centre. The angle between 
x and x' is a. From the symmetry of the external forces R, about the 
centre (Fig. 9) it may be inferred that the displacements u' and v' 
corresponding to the x ' ,  y'  co-ordinates are antisymmetric about the 
origin. In other words td and v' are odd functions of x' and v': 

u ' ( - . ~ ' . . - y ' )  = - , ' ( x ' ,  y ')  

v ' ( - ~ ' ,  y ' )  ...... v't,~', y ') .  

Let us introduce a simplifying assumption that thc longitudinal strain 
~,. is the same at all points in a cross-section parallel to the width and 
that r,. remains the same at all points on a section parallel to the length 
of the plate. The components of displacement can then be represented 
by the following expressions 

(A2) 
1.' : _  ~ l g g  e[ } ¢1<~ ! ~ {Itl~7 r l  @ (Y)A'' " 

where aj.  gl 2 , etc.. are undetermined const:Mlts and ¢o ix a rigid rotation 
which does not enter in the computation of stresses and strains. The 
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ant isymmetry of the displacements implies that (AE) cannot  have 
terms containing x ' y '  and x 'Ey '2, while from the condition that ex, does 
not vary along the width and ey. does not  vary along the length of the 
plate we find that the displacement  functions cannot  have terms with 
x'Ey ' and x 'y  '2. 

From (AE) the strains are expressed as 

Ou' 
ex' = ~ x '  = 3a lx '2  + a2 

Or'  
el.. = ~ y ,  = 3a6y '2 + a5 (A3) 

OV_.~' + OU' = 3(aaX, 2 + a3y,2). 
ZCv' = Ox' ~y '  

For plane stress (Timoshenko & Goodier  1951, p. 24) within the plate 
the stresses are: 

E 
o,,  = 1 - v - ' ' - ' ~ "  (3a lx '2  + 3va6y '2  + a2 + vas )  

E ,-~ 
o,., = 1 - v ~ ( 3 a l v x  - + 3a6y'2 + va2 + as) (A4) 

3 E  (a4x,2 + a 3 y , , )  ' 
r,..,., - 2(1 + v) 

where v is Poisson's  ratio. 
For a long narrow strip the stresses normal  to the boundary  should 

vanish at least at the tips of  the long and the short  axes of  the plate, i.e. 

o,. = 0 a t x '  = a ,  y '  = 0 ,  

O y , = 0  a t x ' = O ,  y ' = b .  

Substituting these boundary  conditions in (A4) we find 

3ala  2 + (a,_ + va5)  = 0 

3a6b'- + (va2 + as) = 0 

o r  

3 
a 2 = , ( v a 6 b  2 - ala  2) 

l - v -  
3 (A5) 

a5 = ~ ( v a l a :  - a6b2). 
1 - v -  

The stresses given by (A4) can therefore be expressed as 

--  E .~ [ 3 a l ( x , 2  _ a2 ) + 3va6y ,2  ] 
t~,., 1 - r -  

E , [3val x '2 + 3a~(y '2 - be)] (A6) OV'=l_v_ 
3E (a4x ,2  + a 3 y , 2 ) .  

re,, - 2(1 + v) 

The body force per unit volume in the plate as given by (A1) has 
components  along the x ' -  and y ' -axes ,  

Rx, = Rx cos Ix + Ry sin Ix 

Ry, = - R x  sin a + Ry  cos Ix. 

Since R,. = 0 and R~ = A x ,  

Re = A cos 2 a . x '  - A sin Ix cos a . y '  

Rv, = - A  sin Ix cos I x . x '  + A sin 2 a . y ' .  

It should be noted 
angle between the 
other  way round.  

From the elastic 
1951), 

(A7) 

that in deriving these equations,  Ix was taken as the 
unpr imed and the primed co-ordinates and not  the 

equat ion of equilibrium (Timoshenko & Goodier  

O°x'---2 + ORE'~ + R x, = 0 
ax '  ay '  

(A8a) 
O°"---d + Orx's' + R v, = 0 
Oy' ~x '  

and from equat ions (A6) and (A7) we have 

1 - v2 + A cos 2 a  x '  + 1 + v 

(A8b) 

1 + v ~1 - v 2 + A sin 2 a  y '  = 0. 

In each of these equations,  for the r ight-hand side to be zero, the 
coefficients o f x '  and y '  mus t  separately be zero. All the coefficients of 
the displacement  functions,  as given by (A2),  are thus determined 
from equat ions (A5) and (A8b): 

- ( 1  - v 2) A cos 2 Ix 
a I --  _ _  

6E 

a2 = ~ (a 2 cos 2 Ix + bEy sin 2 a)  
Z/7. 

l + v  A as = a4 = - - ~  sin a cos a (A9) 

= 2 - ~  (a2v cOs2 Ix + b2 sinE a )  a5 

- ( 1 - v  2) A s i n  2 a .  
a 6 - -  - -  

6E 

The stresses are found from (A6) and (A9) as: 

• 2 tEl O x, = [(a 2 -- x '2) cos 2 a -- v sm a .  y 

= ¢ [ ( b  2 _ y , 2 )  sin E c t _  v c o s  2 a . x  '2] Oy, (A10) 

A . (x'2 y,2). "gx'y' = " ~  s i n  a c o s  Ix + 

For any point (x ' ,  y ' )  the directions of principal stresses (Jaeger 1964, 
p. 7) are given by the relation 

tan 20 = sin 2ix (x  '2 + y ,2)  ( A l l )  
[{ (a  2 - -x tE)  Cos 2 ct -- ( b  2 - y , 2 )  sin 2 Ix} 

+ V(COS 2 IX . X , 2 +  s i n  E Ix. y ,E)]  

From (A10) and ( A l l )  it is evident that  the max imum value of the 
tensile stress is obtained at points along the line x '  = 0. Along such a 
line let us express y '  as a fraction of b, i.e. y '  = cb ,  where c ranges f rom 
0 to 1. The directions of principal stresses are given by the relation 

sin 2ix. c2b 2 
tan 20 = a2 cos2 Ix _ bE(1 _ c2 ) sin2 a - v sin 2 Ix. cEb 2 

Dividing the numera to r  and denominator  by a 2, we find 

c 2 sin 2ix 

tan 20 = (A12) 
"'-'(a) E sin 2 I x ( l + v c  2 c 2) COS 2 IX -- 

x t 

Equat ion (A12) shows that 0 will tend to zero as b/a  tends to zero. 
Thus ,  for slender strips with a much  larger than b, 0 ~ 0, provided Ix # 
90 °. For all values of  b/a ,  0 is zero at the centre of strip, at x '  = y '  = O. 
The values of 0 for b/a  = 1/10 are shown in Table A1 for a as 30, 60 and 
80 °. 0 remains  very small unless Ix is close to 90 ° and a /b  is small. Wh en  
the stresses exceed the tensile strength of a long narrow plate, the 
tension fracture should therefore form essentially normal  to the plate 
length,  irrespective of the angle Ix (with a #- 90 °) between the long axis 
of  the plate and the direction of far-field tensile stress in the viscous 
matrix. 

Table AI .  Direction of max imum tensile stress for uniaxial extension 
at points on short  axis of plate, b / a  = ~ ,  v = ,~. Values of  0 are given 

in degrees 

Position For a = 
of points 30 ° 60 ° 80 ° 

x = 0  
0 0 0 y = 0  

x = 0  
y = ¼b 0.02 0.06 0.29 

x = 0  
y = ½b 0.08 0.26 1.11 

x = 0  
y = ]b 0.19 0.57 2.28 

x = 0  
0.33 1.00 3.60 

y = b  
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B O U D I N A G E  U N D E R  U N E Q U A L  L A Y E R . P A R A L L E L  
E X T E N S I O N  O F  M A T R I X  

R e c t a n g u l a r  p l a t e  s y m m e t r i c a l l y  o r i e n t e d  wi th  respec t  to f l o w  in tit{' 
matri.~ 

The co-ordinate axes x and y are chosen on the upper  surface of the 
plate, with the z-axis directed upward  and with the origin at the centre 
of the upper  face of the elastic plate. Since the flow in the matrix is 
symmetrical  in the upper  and the lower viscous slabs, it is sufficient to 
consider only the upper  slab• The flow is not necessarily axially 
symmetr ic  as in Ramberg ' s  (1955) model  of two-dimensional  boudin-  
age. Rather ,  the far-field matrix strain rates ~ and/~i;, say at z = hi2,  
are taken as unequal  in the general  situation. The solution of the 
problem has been made mainly by represent ing the velocities u, 9 and 
~i, through polynomials  with unknown coefficients. The general  forms 
of the polynomials  are chosen to be consistent with the symmet ry  of  the 
flow and with the condition that the viscous material  adheres  to the 
rigid plates at z = (} and z = h. In particular,  since a marker  line 
parallel to the xy-plane cont inues to remain parallel to the xy-plane,  ~' 
and i': must  be independent  of x and y and are functions of z only• The 
no-slip condition implies that h = 9 = ~ , =  i:, = +., = k . =  0 at 
z = 0. It is also known that - u ( x )  = ~)(-x)  and - / f l y )  = ~ ' ( -y) ,  
with i~ = 0 at x = 0 and 9 = 0 at y = 0. An additional assumpt ion is 
made that the longitudinal strain rates parallel to the x and the y axes 
are constant  at all points on a plane parallel to the xy-plane. This 
implies that G and k,. are functions of  z only. The following express ions  
for the velocities in the matrix are consistent with these conditions. 

tt = a l Y z  2 + a2xz  

= a 3 y z  2 + a 4 y z  (A13) 
fi, = asz  3 + a6z 2, 

where a t , a 2, etc., are unknown  constants.  
The rates of longitudinal strains are: 

- -  - -  a l Z -  - F  a 2 z  

i ,  09 - - a ~ z  ~ + a~z (AI4 )  
at'  

#w 
~: - - 3asz  ~ + 2a6z.  

The rates of  shear  strains are: 

ira' ark 
,/,: = _ _  + I = 2 a l x z  + a~x 

ax  a z  

i~ t i '  # i' 
;,,,: = - -  + - -  = 2a~yz  + aav_ {A15) 

Oy az 

• # 9 (tt~ . . . .  + =(}.  
,~x i~y 

By substi tuting the expressions for the strain rates in the continuity 
equat ion for incompressible flow, i ,  + /,,. + k: = 0, we find, after 
simplification 

(al + a~ + 3a~)z + (a2 + a4 + 2a~) = 0. (A16) 

Equat ion  (AI6 )  leads us to the following inter-relations among  the 
coefficients of (A 13): 

al + a3 + 3a~ = 0 (AIT)  
,t, + a 4 + 2a{, = O. 

Three o ther  inter-relations are obtained by imposing the boundary  
condition that at z = h,  tt = f, = 0 and ~i, = - # , ,  recalling that the 
upper  and the lower confining plates move with a velocity - 6'o and 6, , .  
respectively. 

a lh  + a, = 0 

,:,hh + a~ = 0 
W,, (AI8 )  

aJ? + a, = --/~2" 

Let 

- k .  (AI9 )  

where  k is a constant  ranging between 0 and 1. It may be recalled that 
/",' and i",' are the mid-level strain rates at z = h/2.  From (A14) and 
(AI9 )  we find 

a Jr + 2aa - k h a l  - 2ka, = 0. (A20) 

The coefficients a~-¢6, arc de termined by solving the six equat ions 
given by (A 17). (A I8 )  and (A20). 

06' ,  1 6 6 . , ,  

" '  ....... ?TT-~:i ) 7 -  ('~ (1 + k) h - "  

k o B ,, k (} ~',~ 
i I  ; ~ . . . . . . . . . . . . .  ~ - ,  ( I  4 - -  

(I ¢ ./',1 h '  (1 + k )  h 2" 

2fl',. 3ti',, 

(A21) 

The strain rates in the ~iscous matrix can be determined from (A14),  
(A 15) and (A21 ). For the present  purpose  it is sufficient to determine 
the shear  strain rates f,,: and f,,: on the upper  face of the elastic plate. 
i.e. on the surface z = (t. 

1 6 ti,,,x 
.... - ( l  + k )  h 2 

k (m',0' 
' ' ( l + k )  h 2 

The corresponding shear  stresses arc 

I {W g'o x { 
( 1 + k)  h: 

k 6qt~%y 
T ~ :  - 

(I + k )  h 2 

(A22) 

(A23) 

o r  

,X 12 q B',, 

f l t l  2 

To determine the stresses m the middle plane of the plate we may 
represent  the displacements  u ( x ,  y )  and v ( x ,  y )  by similar express ions  
as in (A2).  Since in this case the long and the short  axes of the 
rectangular  plate are along the x- and y-axes,  respectively, there is no 
rigid rotat ion of the plate. M0reover ,  there is no necessity to determine 
the displacements  with reference to the pr imed co-ordinates.  

I t  := C / i t  l ~ a . . r  -~- a ~ y  3 
, . (A25) 

v = a~.t ~ a~v + aM'".  

where al, a2. etc., are not  necessarily the same as in (A2).  The general  
expressions for stresses ands t r a in s  are the same as in (A3) ,  (A4) and 
(A6).  However ,  in this case. with the long and short  axes aligned 
parallel to the directions of the far-field principal strain rates in the 
matrix,  the shear  stress, r~ should vanish, at least along the lines v = 0 
and x = 0. F rom (A4) we then find that 

The stresses as given by (A6) can then be written as 

E 
a, = - - -  -~ [3a3.~: - .~) + 3va~y:] 

[ v -  

F , (A26) 
/ . ,  = ~ - . i :  v 13, 'a , . ,  + 3 . . ( y  -~ - bh] 

r~  = O. 

From (ASa),  (A24) and (A26). wc find 

61:'a I /t ' 
+ 

(A27) 
( hi:a,, /,A ) y = O  

- • 4 ( I  - J ' : )  

,1~ 6I£(1 + k )  

6E(I  + k) 

(A28) 

where 

The viscous slabs impart  the same stresses on the lower face of the 
elastic plate. The force per  unit vo lume along the middle surface of the 
plate can therefore be represented  by its two componen t s  

I 
R = . . . . . .  A.~ 

( l + k )  
(A24) 

k I~,- U T ~ ]  A y ,  
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Substituting the expressions for a~ and a6 in (A26), we find, after 
simplification, the principal stresses directed parallel to x- and y-axes: 

A O, -- - -  [(a 2 -- x 2) -- vky  2] 
2(1 + k) 

(A29) 
A [k(b 2 _ y2) _ vx2]. 

o~ , -  2(1 + k) 

The max imum value of o~ is at x = 0. Along the line x = O, o~ 
decreases with increasing y. Hence ,  if Ox exceeds the tensile strength of 
the plate, the mid-point extension fracture will form at the centre at a 
right angle to the plate length and,  with increasing cry, will cut across 
the entire width of the plate. 

Rectangular plate asymmetrically oriented with respect to the f low in the 
matrix 

Consider  next a long narrow rectangular  plate lying on the xy-plane 
and with the long axis oriented at an angle a with the x-axis. As  in the 
first case, an approximate solution of this problem can be obtained if 
we assume that the viscous drag on the plate gives rise to a force per 
unit volume on the middle surface of the plate and that the components  
R x and Ry of the force are given by (A24). 

Let  us choose a new set of co-ordinate axes on the middle surface of 
the plate, with x '  and y '  aligned along the long and the short axes. For 
reasons similar to those given for the first case, the displacements may  
be represented as in (A2): 

u '  = a l x  '3 + a2x '  + a3y '3 - o)y' 
(A30) 

v' = a4x '3 + asy' + a6y '3 + ~ x ' .  

The coefficients aj ,  a2, etc., are not necessarily the same as in (A2) or 
(A25). 

From (A24) we have 

1 k 
Rx = ~ Ax ,  Ry = 1 + k A Y "  

The components  along the x ' -  and y ' -axes  are 

A 
Rx ,= R x c o s a  + R y s i n a  = 1 + k  ( x c o s a  + k y s i n a )  

A 
R~ . . . .  R ~ s i n a  + R ~ c o s a  = 1 + k ( - x s i n a  + k y c o s a )  

or 

A 
R x , = ~ [ ( c o s  2 a  + k s i n  2 a ) x '  + ( k -  l )  s i n a c o s a . y ' ]  

A (A31) 
Ry, = ~ [(k - 1) sin a cos a . x '  + (sin 2 a + k cos 2 coy'  ] . 

Substituting the expressions for ax., Oy,, rx,y,, Rx, and Ry from equat ions 
(A6) and (A31) into the equilibrium equat ion (A8a),  we find that 

6Eal + )] 
t + g ( c o s 2 a  + k s i n  2 a  x '  

1 V 2 

[ 3Ea 3 A ( k  - 1) ] 
+ E l + v  + ~ - - - k  s i n a c o s a  y ' = O  

(A32) 
A ( k  - 1) 3Ea4 I x '  

1 + k s i n a c o s a  + 1 + vJ 

[ 6Ea6 A ] 
+ [1 - v 2 + ~ - k  ( s in2a  + k c o s  2 a ) j y '  = 0 .  

In each of these equat ions,  for the r ight-hand side to be zero, the 
coefficients of x '  and y '  must  be zero. Therefore ,  

Table A2. Direction of max imum tensile stress for biaxial extension at 
points on short  axis of plate, b/a = ~ ,  v = ½, ~o = ei~' Values of 0 are 

given in degrees 

Position For a = 
of points  30 ° 60 ° 80 ° 

x = 0  
0 0 0 

y = 0  

x = 0  
y = ~b 0.009 0.01 0.006 

x = 0  
0.04 0.05 0.02 

y = ½b 

x = 0  
Y = ab 0.08 0.11 0.05 

x = 0  
0.14 0.20 0.10 y = b  

A(1 - v 2) (cos 2 a  + k s i n  2 a )  
al 6E(1 + k) 

a3 = a4 = A ( k  - 1)(1 + v) sin a cos a (A33) 
3E(1 + k) 

A(1 - v 2) (sin 2ct + k c o s  2ct), 
a6 6E(I  + k) 

a2 and a5 are then obtained from equat ion (A5). The stresses, as 
obtained after substitution of the expressions for a~, a3, a4 and a6 in 
equat ion (A6),  are 

A [(cos 2 a + k sin 2 a)(a  2 - x '2) 
oi,. ,- 2(1 + k) 

- v(sin 2 a + k cos 2 a)y  '2] 

A [(sin-' a + k cos 2 a)(b 2 - y,2) 
o y . -  2(1 + k) 

- v ( c o s  2 a +  k s i n " a ) x  '2] (A34) 

A(1 - k)  sin a cos a (x '2 + y,2). 
L'y ' -  2(1 + k) 

The max imum value of o x, is obtained on the line x '  = 0. Along that 
line let us express y '  as a fraction of b, i.e. y '  = cb, where c ranges 
between 0 and 1. The directions of the principal stresses on the line 
x '  = 0, are given by the following relation 

(1 - k)c 2" sin 2a 

tan 20 = 

( c o s 2 c t + k s i n 2 c t ) - ( b ) 2 ( l + v c 2 - c 2 ) ( s i n Z a + k c o s 2 c t )  

(A35) 
Equat ion (A35) shows that 0 tends to zero as b/a tends to zero. The 
values of  0 for b/a = 1/10 and k = 1/2 are shown in Table A2, with a 
as 30, 60 and 80 °. For a long narrow plate, 0 always remains small 
unless a is close to 90 °. If the stresses exceed the tensile strength an 
extension fracture should form at the middle of  the plate approxi- 
mately at a right angle to the plate length. 

It may be noted that when k = 0, i.e. for a uniaxial extension in the 
plane of the plate, equat ion (A34) becomes the same as equation 
(A10), while for the symmetrical  case, with a = 0, the primed co-ordi- 
nates  change to unpr imed co-ordinates and equat ion (A34) becomes 
the same as equat ion (A29). 


